RHIZO-FILTRATION OF CU FROM WATER VIA WATER LETTUCE (PISTIA STRATIOTS) USING NA- LAURYL SULPHATE SURFACTANT

Document Type : Original Article

Author

Soil, Water and Environ. Res. Inst., Agric. Res. Cent. (ARC), Giza, Egypt

Abstract

Abstract
Rhizofiltrationwas used to decrease   Cuin   water having  5 , to  20 mg Cu L-1   using water lettuce (Pistiastratiots)  in  water culture (5-L pot capacity ), with a contact time of  5, 10, 15 and 20 days.Weight of Plant growth  was 21.90 , 17.00, 14.61, 12.39 ,and 10.52 for treatments of  0 , 5 , 10, 15 and 20 mg CuL-1  in absence of Sodium Lauryl Sulfate (SLS) respectively. SLS treatment showed negative effect on the biomas production. Removal of Cu from water occurred with all Cu-treaments without SLS. Averages  were 489.03, 575.51, 644.68 and 693.42   ug Cu pot-1   for treatments of  5,10,15 and 20  mg pot-1 respectively. Respective removals caused by root uptake were 76.75, 106.43, 132.11 and 195.75 ug  pot-1  respectively. Cu in shoots ranged from 28 to 61 ugCu g-1 and in roots the range was 35to 150 ug Cu g-1 dry matter. Adding SLSto water increased the removal of Cu. The chelating effect of the SLS made the metal more easily available. Copper in untreated plants (no SLS) were low, while the SLS- treated plants were capable of extracting large amounts of copper. The chelating effect of the SLS on metal increased its availability to water lettuce (Pistiastratiots).

Highlights

الفلترة الجذریة  للنحاس من المیاه بواسطة نبات خس الماء

باستخدام کبریتات الصودیوم لوریل

مجدى محمد نیازی

معهدبحوثالاراضی والمیاه والبیئه-مرکزالبحوث الزراعیه- الجیزه- مصر

العناصر الثقیلة  من الملوثات التی یصعب ازالتها من البیئه حیث لاتخضع للتکسیر الکیمیائى أو البیولوجى توجد  عدة طرق لازالة العناصر الثقیله من میاة الصرف الصناعى او الزراعى الملوثه ولکنها ذات تکلفه مرتفعه  لکن یمکن ازالة التلوث باستخدام النباتات المائیة الطافیة مثل خس الماء

334                                                   Egypt. J. of Appl. Sci., 34 (11) 2019

تم  اجراء تجربة استخدم فیها النبات الطافى خس الماء عن طریق نموالجذور فی اصص تملأ محالیل مغذیة  بها ترکیزات متزایدة من الکادمیوم  هی  0  و 5 و 10 و 15  و 20   ملیجرام \ لتر فى المحلول المغذى (حجم 5 لتر)وقد اضیف النحاس فی صورة  کبریتات النحاس (Cu So4, 5 H2O) وذلک لمدة  5و10 و15 و20 یوم

کان نمو النبات 21.90 ، 17.00 ، 14.61 ، 12.39 ، و 10.52جرام لکل اصیص لعلاج 0 ، 5 ، 10 ، 15 و 20 ملغ من CuL-1 فی غیاب کبریتات الصودیوم لوریل (SLS) على التوالی ، وعلى الجانب الآخر من اضافة کبریتات صودیوم لوریل SLS ظهر تأثیر سلبی کبیر على إنتاج الکتلة الحیویة.

حدثت إزالة النحاس من المیاه الملوثة مع کل المعاملات  بالنحاس بدون SLS. وکانت المتوسطات 489.03 ، 575.51 ، 644.68 و 693.42 میکروغرام من النحاس لکل اصیص عند معاملات 5،10،15 و 20 ملجرام نحاس لکل لتر على التوالی. کانت عملیات الإزالة الناتجة عن امتصاص الجذر 76.75 و 106.43 و 132.11 و 195.75 میکرو جرام لکل اصیص  على التوالی.

أدت إضافة SLS فی المیاه الملوثة إلى زیادة إزالة النحاس حیث ان تأثیر المخلبى لمادة SLS ادى الى ان النحاس اقابل للذوبان ومتاح بسهولة أکبر. وبالتالی ، کانت ترکیزات النحاس فی  الاصص المحتویة على نبات  خس الماءغیر المعالجة (بدون SLS) منخفضة ، فی حین أن النباتات المعالجة SLS کانت قادرة على استخراج کمیات کبیرة من النحاس. توصى الدراسة  باستخدام مخلب SLS لازالة مع نبات خس الماء لانه یجعل النحاس متاحًا بسهولة لخس الماء (Pistiastratiots).

 

Keywords

Main Subjects


Egypt. J. of Appl. Sci., 34 (11) 2019                                              317-334

RHIZO-FILTRATION OF CU FROM WATER VIA WATER LETTUCE (PISTIA  STRATIOTS)  USING NA- LAURYL SULPHATE SURFACTANT

Magdy M. Niazy

Soil, Water and Environ. Res. Inst., Agric. Res. Cent. (ARC), Giza, Egypt

Key words:Rhizofiltration ,water lettuce (Pistiastratiots) ,Na- lauryl sulphate surfactant , and copper 

Abstract

Rhizofiltrationwas used to decrease   Cuin   water having  5 , to  20 mg Cu L-1   using water lettuce (Pistiastratiots)  in  water culture (5-L pot capacity ), with a contact time of  5, 10, 15 and 20 days.Weight of Plant growth  was 21.90 , 17.00, 14.61, 12.39 ,and 10.52 for treatments of  0 , 5 , 10, 15 and 20 mg CuL-1  in absence of Sodium Lauryl Sulfate (SLS) respectively. SLS treatment showed negative effect on the biomas production. Removal of Cu from water occurred with all Cu-treaments without SLS. Averages  were 489.03, 575.51, 644.68 and 693.42   ug Cu pot-1   for treatments of  5,10,15 and 20  mg pot-1 respectively. Respective removals caused by root uptake were 76.75, 106.43, 132.11 and 195.75 ug  pot-1  respectively. Cu in shoots ranged from 28 to 61 ugCu g-1 and in roots the range was 35to 150 ug Cu g-1 dry matter. Adding SLSto water increased the removal of Cu. The chelating effect of the SLS made the metal more easily available. Copper in untreated plants (no SLS) were low, while the SLS- treated plants were capable of extracting large amounts of copper. The chelating effect of the SLS on metal increased its availability to water lettuce (Pistiastratiots).

INTRODUCTION

In Egypt, pollution of the river Nile water hasincreased in the past few decades because of increased populationand activities along the Nile,and increased area of arable land increased  pollution (Fawzy et al., 2012).Phytoremediation is based on utilization of plants to decontaminate soil andwater (Sherameti and Varma, 2015,  Bonanno et al., 2017 and Kumar et al., 2017).Using living plants to remove metals fromcontaminated water (rhizofiltration or phytofiltration)are phytoremediation processes (Espinoza-Quinones et al., 2008& 2009 and Abdelsalam et al., 2015).The removal of contaminants in surface water by plant rootsinvolves adsorption or precipitation of elements onto plant roots or absorption followed by sequestration in roots. This process occurs with Pb, Cd, Cu, Fe, Ni,Mn, Zn and  Cr as well as  radionuclide 90Sr, 137 Cs, 238 U, 236 U (Dushenkov et al.,1995and1997a & b).Aquatic plants  are used in water quality assessmentas bio-monitors (sentinel species),and phyto-remediators to remove suspended solids(Lytle and Lytle, 2001).The ability of aquatic macro-phytes to uptake nutrients directly from water bodies and  assimilate them is of  great benefit (Galal and Shehata 2014). Several aquatic plants effective in heavy metal uptake have been identified (Khankhane et al., 2014). Aquatic plant-based treatment systems are low-cost technologies, which can be adopted by developing countriesfor recycling/treatment of wastewaters, especially those contaminatedby toxic metals (Fawzy et al., 2012). Recent studies concluded that aquatic  macrophytes including water lettuce (Pistiastratiotes), water  hyacinth (Eichhorniacrassipes), and duckweed (Lemma gibba) can be effectively used to capture many pollutants including heavy metals from polluted waters (Miretzky et al., 2004&2006; Odjegba and Fasidi 2004 andOlguin et al. 2017). Water lettuce (Pistiastratiotes) species of family Araceaeis used in phytoremediation. Roots of this floating   plant   hang   underneath their leaves (Williams and Hecky, 2005 and Gupta et al., 2012).The plant displays high  capacityin taking up  impurities, with  extensive spreading roots. It is inexpensive for propagation, and its tissues and cells can be examined microscopically in observing the contaminants (El-Gendy et al., 2005 andDipu et al., 2011).In tropical or subtropical areas, the plant  is used in phytoremediation water systems (Silva et al., 2013). In comparison with inherent plants, it shows greater mineral elimination competence, high uptake  capability and rapid growth(Irfan, 2015). It proved effective in accumulating  heavy metals from wastewaters in Egypt (Galal and Farahat 2015 and Galal et al., 2018).It grows in slow-flowing canals in north Nile Delta, and in Embaba near Cairo (Boulos 2005)as well as  in stagnant waters, around Fariskur , north Delta (Tackholm 1974). It grows  in Lake Mariut (Galal and Farahat 2015) and Lake Manzala (Galal et al., 2012).

318                                                   Egypt. J. of Appl. Sci., 34 (11) 2019

Sodium Lauryl Sulphate (SLS) ,Sodium Dodecyl Benzene Sulphate (SDBS) andSodium TtriPolyPhosphate(STPP)]surfactants, are used in numerous industrial applications including  food, paints, plastics, pharmaceuticals, cosmetics, and textiles  (Cserháti et al., 2002). In particular, anionic surfactants are popular detergent ingredients, because of their synthesis and low production costs. As a consequence of their widespread use and strong resistance to biodegradation,surfactants may persist in wastewater treatment systems at relativelyhigh concentrations (Dirilgen and Ince 1995 andPetterssonet al., 2000).They are used for their ability to meliorate the solubility of petroleum hydrocarbons and heavy metals such as Cd, Zn, Cu and Pbin polluted soils, hence increasing their removal by leaching (Torres et al., 2007 and Ramamurthy and Schalchian 2013) They are used in combination with phytoremediation with herbaceousplants(Liu et al., 2008, 2009, Almeida et al., 2009,Almansoory et al., 2015 and Mao et al., 2015).

Egypt. J. of Appl. Sci., 34 (11) 2019                                                      319

The objective of the current study is to assess the phyto-extraction effectiveness of water lettuce (Pistiastratiots) using Na- lauryl sulphate surfactant

MATERIALS AND METHODS

Pot experiments were conducted to evaluate the efficiency of water lettuce (Pistiastratiotes L.) for phytoremediation of copper contaminated water. Two experiments were  done. One experiment was conducted without presence of Sodium Lauryl Sulfate (SLS). The second was conducted in presence of SLS { CH3(CH2)11(OCH2CH2)nOSO3Na , a relative molar mass of 420 g mol-1 } at 0.5 mM pot-1  (Liu et al. 2008.  The experimental design for each experiment was a randomized complete block, factorial , with 3 replicates . The 2 factors were as follows: Factor 1:  Cu content in water; with 5 treatments i.e.  0, 5, 10, 15 and 20mg Cu L-1 in the form of copper sulphate (Cu SO4, 5 H2O).Factor 2:   Time of exposure duration of roots into the water culture with 4 treatments i.e. 5, 10, 15 and 20 days. Therefore the treatment combinations were 20, and the total number of  treatments was 60. Each pot (PVC) was 20-cm diameter; 40-cm height was filled with 5 L Hoagland nutrient solution maintaining pH between 7.1-7.4. .The pH of the culture water was maintained at between 6.0 to 6.5 using 0.1M HCl and 0.1M NaOHWahla and Kirkham, (2008) andRolli etal.,(2017) Fig 1 shows a drawing of the set-up. The plants were collected from at El-Serw village, south of Manzalah Lake, north eastern Egypt (longitude 31-: 450–32-–500 E and latitude 31-: 00–31-: 350 N), and identified according toTackholm (1974). Fresh and healthy plants of approximately same size and weight were selected, washed with distilled water rinsed with deionized water (Yusuf et al., 2002). The experiments were done during summer of 2019 at the Experimental Farm of Kafr El-Hamam Agricultural Research  Station El Sharkia Governorate, Egypt. This site is located at 30° -35 N latitude and 30° - 57 E   longitudes with an elevation of about 7 meters above mean sea level. Plants were put in a Hoagland solution, for a 10-day acclimatization period, before subjection to heavy metal contamination.  There were two plants per potCopper sulphate (Cu So4, 5 H2O)was usedat concentrations of 0, 5, 10, 15 and 20 mg L-1 in absence and presence of Sodium Lauryl Sulfate (SLS) .Times of assessing effects were  5, 10, 15 and 20days . The volume of water in each pot was kept constant and the change in volume due to evapotranspiration was compensated by addition of deionized water. ؛ CuCu, was determined after digestion with  perchloric, nitric and sulfuric acid mixture (Stewart,1989). Water and plant samples were analyzed for Cu. The removal efficiency was calculated following equation Ganjo and Khwakaram2010 and Kumar et al., 2017):                

320                                                   Egypt. J. of Appl. Sci., 34 (11) 2019

Where R is the removal efficiency in percent (%), while C0and Ct refer to the initial and residual (after t days) heavymetals concentrations in the aqueous solution (mg L−1),respectively.

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1:Ascimatic drawing  rhizo-filtration set up

 

Removal of copper from water was calculated as follows:

R= (C1) - (C0)

-where R =The removal of Cu from water culture

-,C 1= Final concentration of copper in plants after exposure and C0=Concentration of copper in plants before exposure

RESULTS AND DISCUSSION

Plant growth:

Plant growth increased with time; the 20 days growth was 9.37% greater (on average) than the 5 days growth (Tables 1to 4and Fig2&3). On the other hand the growth decreased with increased concentration of Cu in water exhibiting a retarding effect by Cu without SLS. Weights of plant growth (roots+shoots)were  21.90 , 17.00, 14.61, 12.39 ,and 10.52 for treatments of  0 , 5 , 10, 15 and 20 mg CuL-1  respectively , exhibiting a progressive decrease with the increase in Cu  in the culture water . Howevercopper with SLS (Sodium Lauryl Sulfate)decreased were 21.90,14.42,11.09,8.23 and6.25 respectively for the same abovementioned parameters with copper rates of 0 , 5 , 10, 15 and 20 mg CuL-1.The biomass of plants was determined as dry weight.The weight decreased with the increase in the concentration of copper without SLS.This is due to increased Cu in Pistiastratoiteswhich caused oxidative stress and decreased photosynthesis and, .Same studies showed that1900mgL-1 of Cu in hydroponic cultures caused leaf chlorosis in Arabidopsis thaliana (Li et al., 2008).Other studies showed that 491mg Cu L-1, decreased maize root weight in water culture by 50%(Ouzounidou et al.,1995).Increased contents of Cuin culture solution caused decreases in growth weight of plant. These results agree with the findings of Jovanic et al., (2010)who reported that SLS decreased the photosynthetic rate and chlorophyll content in bean plants.

Egypt. J. of Appl. Sci., 34 (11) 2019                                                      321

Table 1 : Using water lettuce (Pistiastratiots)  to remove Cu from water culture: shoots&roots dry weight (g pot-1) with exposure for 5,10,15 and 20 days without SLS.

Timeduration of roots in culture solution (T)

 

Initial Cu content in water culture solution (mg L-1  )  (C)

0

5

10

15

20

Mean

Growth weight  of whole plants (shoots+roots)

5 days

20.87

19.98

18.51

16.39

14.25

18.00

10days

21.73

18.50

16.13

13.85

11.53

16.34

15days

21.98

15.56

13.58

11.94

9.71

14.55

20days

23.03

13.95

10.23

7.38

6.60

12.23

Mean

21.90

17.00

14.61

12.39

10.52

 

LSD 0.05 :   C:   1.74          T: 2.85                 CT: ns

% decrease in weight of plants  due to Cu presence in water

5 days

-

4.26

11.30

21.46

31.72

17.18

10days

-

15.00

25.77

36,26

47.00

31.00

15days

-

29.20

38.21

45.67

55.82

42.22

20days

-

39.42

55.57

67.95

71.34

58.57

Mean

-

21.97

32.71

42.83

51.47

 

Red= reduction %={(control weight – treatment weight)/control weight} x 100

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2: Using water lettuce (Pistiastratiots)  to remove Cu from water culture: shoots&roots  dry weight (g pot-1) with exposure for 5,10,15 and 20 days without SLS

322                                                   Egypt. J. of Appl. Sci., 34 (11) 2019

Table 2 : Using water lettuce (Pistiastratiots)  to remove Cu from water culture: shoots&roots  dry weight (g pot-1) with exposure for 5,10,15 and 20 days withSLS.

Time duration of roots in culture solution (T)

 

Initial Cu content in water culture solution (mg L-1  )  (C)

0

5

10

15

20

Mean

Growth weight  of whole plants (shoots+roots)

5 days

20.87

17.98

14.80

11.29

9.17

14.82

10days

21.73

16.51

12.23

9.15

7.10

13.44

15days

21.98

13.22

10.18

7.35

5.79

11.70

20days

23.03

10.00

7.16

5.16

3.10

9.69

Mean

21.90

14.42

11.09

8.23

6.25

 

LSD 0.05 :   C: 1.19         T: 2.36                 CT: ns

% decrease in weight of plants  due to Cu presence in water

5 days

-

13.84

29.08

45.90

56.06

36.22

10days

-

24.00

43.71

57.89

67.32

48.23

15days

-

39.85

53.68

66.56

73.65

58.43

20days

-

56.57

68.91

77.59

86.53

72.40

Mean

-

33.56

48.82

61.98

70.89

 

 

 

Fig 3: Using water lettuce (Pistia  stratiots)  to remove Cu from waterculture:shoots&roots  dry weight (g pot-1) with exposure for 5,10,15 and 20 days withSLS

Egypt. J. of Appl. Sci., 34 (11) 2019                                                      323

Table3: Usingwater lettuce (Pistiastratiots)) to remove CUfrom water culture: Growth dry weight of shoots  and roots  as  affected by water Cu  without SLS   .

Time duration of roots in culture solution (T)

Initial Cu content in nutrient solution mg L-1 (C)

0

5

10

15

20

Mean

Shoots dry weight (gpot-1)

5 days

18.11

17.53

16.29

14.48

12.58

15.79

10days

18.91

16.17

14.18

12.31

9.56

14.22

15days

19.12

13.38

11.87

10.43

8.10

12.58

20days

20.00

11.95

8.67

6.15

5.62

10.47

Mean

19.03

14.75

12.75

10.84

8.96

 

LSD 0.05 :   C:0.97       T: 1.98      CT: ns

% decrease in shoot weight of  due to Cu presence in water culture

5 days

-

3,20

10.04

20.00

30.53

30.95

10days

-

14.48

25.00

34.90

49.44

42.74

15days

-

30.00

37.91

45.44

57.63

59.51

20days

-

40.25

56.65

69.25

71.90

30.95

Mean

-

21.98

32.40

42.40

52.37

 

Roots weight gpot-1

5 days

2.76

2.45

2.22

1.91

1.68

2.20

10days

2.81

2.33

1.95

1.64

1.45

2.00

15days

2.89

2.17

1.71

1.49

1.15

1.88

20days

3.10

2.00

1.56

1.23

0.98

1.70

Mean

2.89

2.23

1.86

1.56

1.31

 

 

LSD 0.05 :   C:0.15        T: 0.46         CT: ns

% decrease in root weight due to Cu presence in water

5 days

-

11.23

19.56

30.79

39.13

25.17

10days

-

17.08

30.60

41.63

48.39

43.42

15days

-

24.91

40.83

48.44

60.20

52.59

20days

-

35.48

49.67

60.32

68.38

54.00

Mean

-

22.17

35.16

45.29

54.02

 

324                                                   Egypt. J. of Appl. Sci., 34 (11) 2019

Table 4: Using water lettuce (Pistiastratiots)) to remove Cu from water culture: Growth dry weight of shoots  and roots  as  affectedby water Cu  with SLS

Time duration of roots in culture solution (T)

Initial Cu content in nutrient solution mg L-1 (C)

0

5

10

15

20

Mean

Shoots dry weight (gpot-1)

5 days

18.11

14.51

10.73

9.48

8.55

11.90

10days

18.91

12.65

9.34

7.66

6.00

10.91

15days

19.12

11.32

8.58

6.13

4.81

9.90

20days

20.00

8.30

5.84

4.27

2.31

8.14

Mean

19.03

11.69

8.64

6.88

5.41

 

LSD 0.05 :   C:1.17       T: 2.14      CT: ns

% decrease in shoot weight of  due to Cu presence in water culture

5 days

-

19.87

40.75

47.65

52.78

40.26

10days

-

33.10

50.60

59.49

68.27

52.11

15days

-

40.79

55.12

67.93

74.84

59.67

20days

-

58.5

70.80

78.65

88.45

74.10

Mean

-

38.06

54.31

63.43

71.08

 

Roots weight gpot-1

5 days

2.76

2.25

2.15

1.81

1.15

2.02

10days

2.81

2.00

1.89

1.49

0.98

1.83

15days

2.89

1.70

1.55

1.22

0.78

1.62

20days

3.10

1.00

0.89

0.72

0.66

1.27

Mean

2.89

1.73

1.62

1.31

0.88

 

 

LSD 0.05 :   C:0.56          T: 0.78         CT: ns

% decrease in root weight due to Cu presence in water

5 days

-

18.47

22.10

34.42

58.33

33.30

10days

-

28.82

32.72

46.97

65.12

43.40

15days

-

41.17

46.36

57.78

73.01

54.58

20days

-

67.74

71.29

76.77

78.70

73.62

Mean

-

39.18

43.11

53.98

68.79

 

 

Removal of Cd from the water culture:

Plants removed Cu without and with SLS from the water culture (Tables 5and 6). Plants grown in the no-Cu showed no detectable Cu.The average removal of Cu through uptake over the 5 Cu treatments by plant (shoots+roots) were 110.46,489.03, 575.51, 644.68 and 693.42   ug Cu pot-1   for 5Cutreatments (average of the four immersion times)  . Comparable uptakes by roots were 7.43, 76.75, 106.43, 132.11 and 195.75 ug pot-1 respectively. The  progressive decrease  is in line with the  increase  in  Cu in  growth media  the decreased plant   growth  associated  with the increased Cu  in the water culture. Contents of Cu in root were generally greater than in shoots. Contents in roots averaged 35, 57, 85 and 150 ugg-1 (an average of 82 ug g-1) . Comparable contents in shoots were 28, 37, 48 and 61 ug g-1 (average of 44 ug g-1) without SLS addition.

Egypt. J. of Appl. Sci., 34 (11) 2019                                                      325

 As for the effect of copper with SLS application the obtained data clearly indicate that the average removal of Cu through uptake amounts by plant (shoots+roots) were 110.46,641.03,691.73,745.12 and 808.79 ug Cu pot-1 for 5 treatments respectively while uptakes by roots were7.43, 93.76, 120.97, 153.85and182.43 ug pot-1 for the 5 Cu treatments respectively.

The decrease plant growth cause by Cu addition is in harmony with results of Vinodet al., 2019obtained decreased plant growthP. stratiotes plants upon addition of 5 to 20mg Cu L-1 in water culture solutionJiang et al., (2000) showed that root biomass of BrasicaJunceadecreased  with increasing, Cu contamination. The negative effect of Cu on plant growth was reported in plants such as maize (Liu et al., 2001) andwheat (Cook et al., 1997and Dudka et al., 1994).

Table 5 :Using water lettuce (Pistiastratiots) to remove Cufrom water culture: Cu removal  by plants (ug pot-1) with exposure for 5,10,15 and 20 days without SLS

Time duration of roots in culture solution (T)

 

Initial Cu content in water culture solution (mg L-1  )  (C)

0

5

10

15

20

Mean

Cu removed from culture solution by ‘shoots+roots’ 

                                                                                            

5 days

105.13

345.12

430.23

506.19

552.35

458.47

10days

109.58

464.17

563.17

634.78

677.12

584.81

15days

110.92

534.23

621.43

684.67

747.11

646.86

20days

116.24

612.63

687.23

753.10

797.12

712.52

Mean

110.46

489.03

575.51

644.68

693.42

 

LSD   0.05           C: 7.4                  T: 31.1                  CT: 35.9   

Cu removed from  solution culture by shoots

5 days

97.79

301.25

352.72

416.06

442.19

378.05

10days

102.11

394.50

471.39

524.63

556.33

486.71

15days

103.24

446.11

500.52

545.11

571.34

515.77

20days

108.00

507.28

551.69

577.21

596.62

558.20

Mean

102.78

412.28

469.08

515.75

541.62

 

LSD 0.05 :   C: 8.3                 T: 29.7                 CT:   34.4                      

Cu removed from culture solution by  roots   

5 days

7.34

43.87

77.51

90.13

110.16

80.41

10days

7.47

69.67

91.78

110.15

120.79

98.09

15days

7.68

88.12

120.91

139.67

175.78

131.12

20days

8.24

105.34

135.54

145.89

200.50

146.81

Mean

7.43

76.75

106.43

132.11

195.75

 

LSD 0.05 :   C:1.5                        T: 6.3                        CT: 8.3   

326                                                   Egypt. J. of Appl. Sci., 34 (11) 2019

Table 6 :Using water lettuce (Pistiastratiots) to remove Cufrom water culture: Cu removal  by plants (ug pot-1) with exposure for 5,10,15 and 20 days with SLS

Time duration of roots in culture solution (T)

 

Initial Cu content in water culture solution (mg L-1  )  (C)

0

5

10

15

20

Mean

Cu removed from culture solution by ‘shoots+roots’ 

                                                                                            

5 days

105.13

526.13

586.13

632.45

670.17

603.72

10days

109.58

615.15

645.78

696.25

749.76

676.73

15days

110.92

690.31

745.66

796.34

850.17

770.62

20days

116.24

732.56

789.35

855.44

965.06

835.60

Mean

110.46

641.03

691.73

745.12

808.79

 

LSD   0.05           C: 9.4                  T: 33.1                  CT: 35.9   

Cu removed from  solution culture by shoots

5 days

97.79

471.31

499.25

519.79

542.47

508.20

10days

102.11

528.05

541.06

566.57

598.52

558.55

15days

103.24

580.03

605.53

625.23

654.89

616.42

20days

108.00

609.72

637.20

656.46

709.88

653.31

Mean

102.78

547.27

570.76

592.01

626.44

 

LSD 0.05 :   C: 10.3                 T:  28.9                       CT:   30.7 

Cu removed from culture solution by  roots   

5 days

7.34

54.82

86.88

112.66

127.70

95.51

10days

7.47

87.10

104.72

128.68

151.24

117.93

15days

7.68

110.31

140.13

171.11

195.28

154.20

20days

8.24

122.84

152.15

198.98

255.17

182.28

Mean

7.43

93.76

120.97

152.85

182.43

 

LSD 0.05 :   C: 2.2                        T: 7.3                        CT: 9.4   

 

Negative effect of Cu could be due to interference with metabolic processes associated with normal development (Lidon and Henriques, 1992;  VanArshe and Clijster, 1990).Cu decreased  chlorophyll as well as leaf water content. The decrease inChlorophyll may be due to inhibition of chlorophyll synthesis and protochlorophyllidereductase activity (Stiboravaet al., 1987) and stimulation of chlorophyll- degrading chlorophyllase activity (Drazkiewice, 1994). It is likely that the decrease in leaf water content RWC was mainly due to on the plasma membrane permeability of cells (Ohsumi et al., 1988).The SLS treatment caused negativeeffect on the plant growth. These results agree with findings of Sharrel et al., 2014 who noted negative effect SLS, lowering the pH wouldincreases the toxic effect of metal pollution.SLS decreased  photosynthetic rate and chlorophyll content in bean plants Jovanic et al. (2010)and Gadallah(1996).Noted a retarding effect of SLSonsunflower. Effectivemetal removal of heavy metals by aquatic plants was reported by many researchers with removal rates close to or higher than 90% (Mishra and Tripathi, 2008 andMungur et al., 1997).High metal removal rates are common when aquatic plants contains high concentrations of metals (Kao et al., 2001).

Egypt. J. of Appl. Sci., 34 (11) 2019                                                      327

Metals such as Zn, Mn, Ni and Cu are essential micronutrients  andtheir, accumulation does not exceed their metabolic needs of <10mg Kg-1(Boyd and Martens, 1994).Water lettuce can be a hyperaccumulator of Heavy metals(Zayed et al., 1998)and its usein remediating  waste waterscan be effective(Mishra and Tripathi, 2008). Results of the present are in harmony with those recorded byVardanyan and Ingole, (2006) who found that roots of water lettuce had high Cu content than shootsSLS can be used to in remediation of somehydrocarbons(Mulligan et al., 1999a,b).Pants respond to heavy metals by ways  including immobilization, exclusion, compartmentaliziation and  synthsis of metallothioneins, (Sanita-Di-Toppiand Gabbrielli, 1999 and Abdelsalamet al., 2015).

According to Bernard, (1997).mechanisms of copper tolerance in higher plants can be grouped as follows:

a)      Exclusion or restriction of copper uptake

b)      .Immobilization of Cu in cell walls.

c)      Compartmentation of Cu in insoluble complexes.

d)     Compartmentation of Cu in soluble complexes.

e)      Enzyme adaptation

It may be conclude that rhizofiltration can be applicable and appropriate at low cost. Selection of the appropriate plant species is vital. Based on the present results Pistiastratoites may be used to remove Cu from contaminated waters. Phytoremediation of wastewater through rhizofiltration using Pistiastratoites can be pracical preposition with low costs.

REFERENCES

Abdelsalam, A.A. ;H.M. Salem ; M.A.Abdelsalamand F.Seleiman (2015).Phytochemical removal of heavy metal-contaminated soils.In .Sherameti, I and Varma, A. eds. Heavy metal contamination of soils :Monitoring and remediation. Springer Intl. Pub.AG Switzerland.

Almansoory, A.F. ; H.A.Hasan ; M. Idris ; S.R.S. Abdullah and N. Anuar (2015): Potential application of a biosurfactant in phytoremediation technology for treatment of gasoline-contaminated soil. Ecol Eng., 84:113–120.

328                                                   Egypt. J. of Appl. Sci., 34 (11) 2019

Almeida, C.M.R. ; A.C. Dias ; A.P.Mucha ; A.A. Bordalo and M.T.S.Vasconcelos (2009):Influence of surfactants on the Cu phytoremediation potential of a salt marsh plant. Chemosphere., 75:135–140.

Bernard, K. (1997): Copper. Michgan, state, UniversityAvailable (on line) h ttp: // WWW. Msu.Edu/ course / css / 853 / copper. Html

Bonanno, G. ; J.A. Borgand and V. Di Martino (2017):Levels of heavy metals in wetland and marine vascular plants and their bio-monitoring potential :A comparative assessment. Sci. Total Environ., 576:796–806.

Boulos,L.(2005): Flora of Egypt: Vol. 4 (Monocotyledons). Al-Hadara  Pub. Co. , Cairo,Egypt.

Boyd, R.S. and S.N. Martens (1994): Nickel hyper accumulated by Thlaspimontanum var. montanum is acutely toxic to an insect herbivore. Oikos., 70: 21 - 25

Cook, C.M. ; E. Vandaka and T. Lanaras (1997): Concentrations of Cu, growth and chlorophyll content of field-cultivated wheat growing in naturally enriched Cu soil. Bulletin of Environ Contamination and Toxicology, 58: 2: 248-253

Cserháti, T. ; E.Forgács and G. Oros(2002): Biological activity and environmental impact of anionic surfactants. Environ Int., 28:337–348.

Dipu, S. ; A.A. Kumar and V.S.G. Thanga (2011): Phytoremediation of dairy effluent by constructed wetland technology. Environmentalist, 31: 263-278

Dirilgen, N. and N. Ince (1995): Inhibition effect of the anionic surfactant SDS on duckweed, Lemna minor with considerations of growth and accumulation.Chemosphere., 3:4185–4196.

Drazkiewice, M. (1994): Chlorophyll – occurrence, function and mechanism of action. Effects of external and internal factors.Photosynthetica., 50: 321-331

Dudka, S.M. ; M. Piotrowska and A. Chlopecka (1994): Effect of elevated concentrations of Cd and Zn in soil on spring wheat yield and the metal content of the plants. Water Air Soil Pollut., 76: 333 – 341

Dushenkov, S. ; D. Vasudev ; Y.Kapulnik ; D.Gleba ; D.Fleisher ; K.C. Ting andB. Ensley (1997a): Removal of uranium from water using terrestrial plants. Environ Sci Technol., 31:3468–3474

Egypt. J. of Appl. Sci., 34 (11) 2019                                                      329

Dushenkov, S. ; D.Vasudev ; Y. Kapulnik ; D. Gleba ; D. Fleisher ; K.C. Ting and B.Ensley (1997b): Phytoremediation: a novel approach to an old problem. In: Wise D.L. (ed) Global environmental biotechnology. Elsevier Science B.V, Amsterdam, Netherland

Dushenkov, V. ; P.B.A.N. Kumar ; H.Motto and I. Raskin(1995):Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environ Sci Technol., 29:1239-1245

El-Gendy, A. S. ; N. Biswas and J. K. Bewtra(2005): A floating aquatic system employing water hyacinth for municipal landfill leachate treatment: Effect of leachate characteristics on the plant growth. J. Environ. Eng. Sci., 4: 227-240

Espinoza-Quinones, F.R. ; E.A. Silva ; M.A. Rizzutto ; S.M.Palácio ; A.N.Módenes and  N. Szymanski (2008): Chromium ions phytoaccumulation by three floating aquatic macrophytes from a nutrient medium World Journal of Microbiology and Biotechnology, 2: 3063–3070.

Espinoza-Quiñones, F.R. ; A.N. Módenes ; I.L. Costa ; J.R. Palácio ; S.M. Daniela ; N.S. Trigueros ; E.G. Kroumov and A.D. Silva (2009):Kinetics of lead bioaccumulation from a hydroponic medium by aquatic macrophytesPistiastratiotes . Water Air Soil Pollut., 203:29–37

Fawzy, M.A. ; N.E. Badr ; A.El-Khatib and A. Abo-El-Kassem (2012):Heavy metal biomonitoring and phytoremediation potentialities of aquatic macrophytes in River Nile .Environmental Monitoring and Assessment, 184: 1753–1771.

Gadallah, M.A.A. (1996):Phytotoxic effects of industrial and sewage waste waters on growth, chlorophyll content, transpiration rate and relative water content of potted sunflower plants. Water Air Soil Pollut., 89:33–47

Galal, T. ;K. Shaltoutand L. Hassan (2012): The Egyptian northern lakes:habitat diversity, vegetation and economic importance. LAP Lamber Academic, Saarbrückent

Galal, T.M. and H.S. Shehata(2014): Evaluation of invasive macrophyteMyriophyllumspicatum L. as a bioaccumulator for heavy metals in some water courses of Egypt. Ecological Indicators., 41: 209-214

Galal, T.M. ; E.M. Eid ; M.A. Dakhil and L.M. Hassan (2018):Bioaccumulation and rhizofiltration potential of PistiastratiotesL. for mitigating water pollution in the Egyptian  wetlands. Int J Phytorem., 20:440–447

330                                                   Egypt. J. of Appl. Sci., 34 (11) 2019

Galal, T.M and E.A. Farahat (2015): The invasive macrophytePistiastratiotes L. as a bioindicator for water pollution in Lake Mariut, Egypt.Environ Monit Assess., 187(701): 1-10

Ganjo, D.G. and A.I. Khwakaram (2010): Phytoremediation of wastewater using some of aquatic  macrophytes as biological purifiers for irrigation purposes. Int J Environ ChemEcol Geo Geophys Eng., 4:222–245.

Gupta, P. ; R. Surendra and A.B. Mahindrakar (2012):Treatment of water using water hyacinth, water lettuce and vetiver grass - a review. Resour. Environ., 2: 202-215

Irfan, S. (2015): Phytoremediation of heavy metals using macrophyte culture. J. Int. Sci. Public., 9: 476-485

Jiang, X.J. ; Y.M. Luo; Q. G. Zhao; S.V. Wu; L.H. Wu; X. L. Qiao and J. Song (2000): Phytoreemediation of heavy metal contaminated soils. I response of metal accumulator plant Brassica Juncea to soil contamination of copper, zinc, cadmium and lead.Soils., 32: 71-74

Jovanic, B.R. ; S.Bojovic ; B. Panic ; B.Radenkovic and M.Despotovic (2010): The effect of detergent as polluting agent on the photosynthetic activity and chlorophyll content in bean leaves. Health., 2:395–399

Kao, C.M. ; J.Y. Wang ; H.Y. Lee and C.K. Wen (2001): Application of a constructed wetland for non-point source pollution control. Water Science and Technology., 44:585-590.

Khankhane, P. ; J. Sushilkumar and H.S. Bisen(2014): Heavy metal extracting potential of common aquatic weeds. Indian Journal of Weed Science., 46(4): 361-363.

Kumar, B. ; K. Smita and L.C. Flores (2017): Plant mediated detoxification of mercury and lead. Arab J Chem., 10:S2335–S2342

Lidon, F.C. and F.S. Henriques (1994): Subcelbular localization of copper and partial isolation of copper proteins in roots, from rice plants exposed to excess copper. J. Plant Physiol., 21: 427-436

Li, J. ; M.Leisner and J.Frantz (2008):Alleviation of copper toxicity in Arabidopsis thaliana by silicon addition to hydroponic solutions.J.Am.Soc.Hort.Sci., 133: 670–677

Egypt. J. of Appl. Sci., 34 (11) 2019                                                      331

Liu, D. ; W. Jang and W. Hou (2001): Uptake and accumulation of copper by roots and shoots of maize (Zea may L). Journal of Environmental Sciences, 13(2): 228-232.

Liu, J.N. ; Q.X. Zhou and T.Sun (2009): Cadmium tolerance and accumulation of Althaearosea Cav. and its potential as a hyperaccumulator under chemical enhancement. Environ Monit Assess., 149:419–427.

Liu, J.N. ; Q.X. Zhou ; T. Sun ; L.Q. Ma and S.Wang (2008): Identification and chemical enhancement of two ornamental plants for phytoremediation. Bull Environ ContamToxicol., 80:260–265.

Lytle, J.S. and T.F. Lytle (2001): Use of plants for toxicity assessment of estuarine ecosystems.Environ. Toxicol. Chem., 20 (1): 68–83.

Mao, X. ; R. Jiang ; W. Xiao and J.Yu (2015): Use of surfactants for the remediation of contaminated soils: a review. J Hazard Mater., 285:419–435

Miretzky, P. ; A. Saralegui and F. Cirelli (2004): Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina). Chemosphere., 57:997–1005.

Miretzky, P. ; A. Saralegui and A.F. Cirelli (2006): Simultaneous heavy metal removal mechanism by dead macrophytes.Chemosphere., 62:247–254

Mishra, V.K. and B.D. Tripathi.(2008): Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresource Technology., 99:7091-7097.

Mulligan, C.N. ;R.N.Yong and B.F.Gibbs (1999a): On the use of biosurfactants for the removal of heavy metals from oil contaminated soil. Environ. Prog., 18: 31-35.

Mulligan, C.N. ; R.N. Yong and B.F. Gibbs (1999b): Removal of heavy  metals from contaminated soil and sediments using the biosurfactantsurfactin. J. Soil Contam., 8. 231-254

Mungur, A.S. ; R.B.E. Shutes ; D.M. Revitt and M.A. House (1997): An assessment of metal removal by a laboratory scale wetland. Water Science and Technology., 35:125-133.

Odjegba, V.J. and I.O. Fasidi (2004):Accumulation of trace elements by Pistiastratiotes: implications for phytoremediation. Ecotoxicology., 13:637–646.

Olguin, E.J. ; D.A. Garcia-Lopez ; R.E. Gonzllez-Portela andG. Snchez-Galvln (2017):Year-round phytofiltration lagoon assessment using Pistiastratiotes within a pilot-plant scale biorefinery. Sci Total Environ., 592:326–333.

332                                                   Egypt. J. of Appl. Sci., 34 (11) 2019

Ohsumi, Y. ; K. Kitamoto and Y. Anrakeu (1988): Changes induced in the permeability barrier of the yeast plasma membrane by cuperic ion. J Bact., 170: 2676-2682

Ouzounidou, G. ; M.Ciamporova ;M.MoustakasandK.Arataglis(1995):Responsesof maize (Zea mays L.) plants to copper stress.I.Growth ,mineral content andultrastructure of roots.Environ.Exp.Bot., 35: 167–176

Pettersson, A. ; M. Adamsson and G. Dave (2000): Toxicity and detoxification of Swedish detergents and softener products. Chemosphere., 41:1611–1620.

Ramamurthy, A. and H. Schalchian (2013): Surfactant assisted removal of Cu(II),Cd(II) and Pb(II) from contaminated soils. Environ Prot Eng., 39(3): 88–99.

Rolli, N.M. ; R.B.Hujaratti ; H.S.Giddanavar ; G.S.Mulagund and T.C. Taranath(2017):Toxicity Effect of Copper on Aquatic Macrophyte (PistiastratiotesL.)Int J Cur Res Rev., 9 (15):14-20.

Sanita-Di-Toppi, L. and I.Gabbrielli(1999): Response to cadmium in higher plants. Environ. Bot., 41:105-130

Sharrel, R. ; K.A. Aju ; M.Sathish and M.S. Jisha (2014): Surfactants: toxicity, remediation and green surfactants. Environ ChemLett., 12:275–287

Sherameti, I. and A.Varma (2015):Heavy metal contamination of soils :Monitoring and remediation. Springer Intl. Pub.AG Switzerland

Silva, S.A. ; V.H. Techio ; E.M. Castro ; M.R. Faria and M.J. Palmieri(2013): Reproductive, cellular, and anatomical alterations in Pistiastratiotes L. plants exposed to cadmium.Water Air Soil Pollut., 224: 1454-1462

Stiborava, M. ; M. Ditrichova and A. Brezinova (1987): Effect of heavy metal ions on growth and biochemical characteristics of photosynthesis of barley and maize seedling. Biol. Plant., 29(6):453 – 467

Stewart, E. A. (1989): Chemical analysis of Ecological Materials Ed2. Blackwell scientific publications, Oxford, London, Edinburgh

Tackholm, V. (1974): Students’ flora of Egypt. Cooperative Printing Company, Beirut

Egypt. J. of Appl. Sci., 34 (11) 2019                                                      333

Torres, L.G. ; M.Climent ; J.Saquelares ; E.R. Bandala ; J. Urquiza and R. Iturbe (2007): Characterization and treatability of a contaminated soil from an oil exploration zone. Int J Environ Sci Technol., 4:311–322

Vardanyan,L.G. and B.S. Ingole (2006):Studies on heavy metal accumulation in aquatic macrophytes from Sevan (Armenia) and Carambolim (India) lake systems. Environ Int., 32:208–218

Van Asshe, F. and H. Clijster. (1990): Effects of metals on enzyme activity in plant. Plant cell environ. 13: 195-206

Vinod, K., S .Jogendra ., S. Ashu and K. Pankaj (2019 ) : Phytoremediation of copper, iron and mercury from aqueous solution by water lettuce (Pistiastratiotes L).Environmental Sustainability (2019) 2:55–65

Wahla, I. H. and M. B. Kirkham (2008): Heavy metal displacement in salt-water irrigated soil during phyto-remediation. Environ. Poll.,155: 271-283.

Williams, A.E. and R.E. Hecky(2005): Invasive aquatic weeds and eutrophication: The case of water hyacinth in lake Victoria., In: Restoration and Management of Tropical Eutrophic Lakes. M. Vikram Reddy (ed.), Science Publishers, Enfield, NH, USA, pp. 187-225.

Yusuf A.A. ; T. Arowolo and O.Bamgbose(2002):Cd, Cu and Ni levels in vegetables from industrial and residential Areas of Lagos city Nigeria. Global journal of Environmental Sciences., 1: 1-3.

Zayed, A. ; S.Gowthaman and N. Terry (1998):Phytoaccumulation of trace elements by wetland plants: I. Duckweed. J. Environ Qual., 27:715–721

الفلترة الجذریة  للنحاس من المیاه بواسطة نبات خس الماء

باستخدام کبریتات الصودیوم لوریل

مجدى محمد نیازی

معهدبحوثالاراضی والمیاه والبیئه-مرکزالبحوث الزراعیه- الجیزه- مصر

العناصر الثقیلة  من الملوثات التی یصعب ازالتها من البیئه حیث لاتخضع للتکسیر الکیمیائى أو البیولوجى توجد  عدة طرق لازالة العناصر الثقیله من میاة الصرف الصناعى او الزراعى الملوثه ولکنها ذات تکلفه مرتفعه  لکن یمکن ازالة التلوث باستخدام النباتات المائیة الطافیة مثل خس الماء

334                                                   Egypt. J. of Appl. Sci., 34 (11) 2019

تم  اجراء تجربة استخدم فیها النبات الطافى خس الماء عن طریق نموالجذور فی اصص تملأ محالیل مغذیة  بها ترکیزات متزایدة من الکادمیوم  هی  0  و 5 و 10 و 15  و 20   ملیجرام \ لتر فى المحلول المغذى (حجم 5 لتر)وقد اضیف النحاس فی صورة  کبریتات النحاس (Cu So4, 5 H2O) وذلک لمدة  5و10 و15 و20 یوم

کان نمو النبات 21.90 ، 17.00 ، 14.61 ، 12.39 ، و 10.52جرام لکل اصیص لعلاج 0 ، 5 ، 10 ، 15 و 20 ملغ من CuL-1 فی غیاب کبریتات الصودیوم لوریل (SLS) على التوالی ، وعلى الجانب الآخر من اضافة کبریتات صودیوم لوریل SLS ظهر تأثیر سلبی کبیر على إنتاج الکتلة الحیویة.

حدثت إزالة النحاس من المیاه الملوثة مع کل المعاملات  بالنحاس بدون SLS. وکانت المتوسطات 489.03 ، 575.51 ، 644.68 و 693.42 میکروغرام من النحاس لکل اصیص عند معاملات 5،10،15 و 20 ملجرام نحاس لکل لتر على التوالی. کانت عملیات الإزالة الناتجة عن امتصاص الجذر 76.75 و 106.43 و 132.11 و 195.75 میکرو جرام لکل اصیص  على التوالی.

أدت إضافة SLS فی المیاه الملوثة إلى زیادة إزالة النحاس حیث ان تأثیر المخلبى لمادة SLS ادى الى ان النحاس اقابل للذوبان ومتاح بسهولة أکبر. وبالتالی ، کانت ترکیزات النحاس فی  الاصص المحتویة على نبات  خس الماءغیر المعالجة (بدون SLS) منخفضة ، فی حین أن النباتات المعالجة SLS کانت قادرة على استخراج کمیات کبیرة من النحاس. توصى الدراسة  باستخدام مخلب SLS لازالة مع نبات خس الماء لانه یجعل النحاس متاحًا بسهولة لخس الماء (Pistiastratiots).

 

REFERENCES
Abdelsalam, A.A. ;H.M. Salem ; M.A.Abdelsalamand F.Seleiman (2015).Phytochemical removal of heavy metal-contaminated soils.In .Sherameti, I and Varma, A. eds. Heavy metal contamination of soils :Monitoring and remediation. Springer Intl. Pub.AG Switzerland.
Almansoory, A.F. ; H.A.Hasan ; M. Idris ; S.R.S. Abdullah and N. Anuar (2015): Potential application of a biosurfactant in phytoremediation technology for treatment of gasoline-contaminated soil. Ecol Eng., 84:113–120.
328                                                   Egypt. J. of Appl. Sci., 34 (11) 2019
Almeida, C.M.R. ; A.C. Dias ; A.P.Mucha ; A.A. Bordalo and M.T.S.Vasconcelos (2009):Influence of surfactants on the Cu phytoremediation potential of a salt marsh plant. Chemosphere., 75:135–140.
Bernard, K. (1997): Copper. Michgan, state, UniversityAvailable (on line) h ttp: // WWW. Msu.Edu/ course / css / 853 / copper. Html
Bonanno, G. ; J.A. Borgand and V. Di Martino (2017):Levels of heavy metals in wetland and marine vascular plants and their bio-monitoring potential :A comparative assessment. Sci. Total Environ., 576:796–806.
Boulos,L.(2005): Flora of Egypt: Vol. 4 (Monocotyledons). Al-Hadara  Pub. Co. , Cairo,Egypt.
Boyd, R.S. and S.N. Martens (1994): Nickel hyper accumulated by Thlaspimontanum var. montanum is acutely toxic to an insect herbivore. Oikos., 70: 21 - 25
Cook, C.M. ; E. Vandaka and T. Lanaras (1997): Concentrations of Cu, growth and chlorophyll content of field-cultivated wheat growing in naturally enriched Cu soil. Bulletin of Environ Contamination and Toxicology, 58: 2: 248-253
Cserháti, T. ; E.Forgács and G. Oros(2002): Biological activity and environmental impact of anionic surfactants. Environ Int., 28:337–348.
Dipu, S. ; A.A. Kumar and V.S.G. Thanga (2011): Phytoremediation of dairy effluent by constructed wetland technology. Environmentalist, 31: 263-278
Dirilgen, N. and N. Ince (1995): Inhibition effect of the anionic surfactant SDS on duckweed, Lemna minor with considerations of growth and accumulation.Chemosphere., 3:4185–4196.
Drazkiewice, M. (1994): Chlorophyll – occurrence, function and mechanism of action. Effects of external and internal factors.Photosynthetica., 50: 321-331
Dudka, S.M. ; M. Piotrowska and A. Chlopecka (1994): Effect of elevated concentrations of Cd and Zn in soil on spring wheat yield and the metal content of the plants. Water Air Soil Pollut., 76: 333 – 341
Dushenkov, S. ; D. Vasudev ; Y.Kapulnik ; D.Gleba ; D.Fleisher ; K.C. Ting andB. Ensley (1997a): Removal of uranium from water using terrestrial plants. Environ Sci Technol., 31:3468–3474
Egypt. J. of Appl. Sci., 34 (11) 2019                                                      329
Dushenkov, S. ; D.Vasudev ; Y. Kapulnik ; D. Gleba ; D. Fleisher ; K.C. Ting and B.Ensley (1997b): Phytoremediation: a novel approach to an old problem. In: Wise D.L. (ed) Global environmental biotechnology. Elsevier Science B.V, Amsterdam, Netherland
Dushenkov, V. ; P.B.A.N. Kumar ; H.Motto and I. Raskin(1995):Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environ Sci Technol., 29:1239-1245
El-Gendy, A. S. ; N. Biswas and J. K. Bewtra(2005): A floating aquatic system employing water hyacinth for municipal landfill leachate treatment: Effect of leachate characteristics on the plant growth. J. Environ. Eng. Sci., 4: 227-240
Espinoza-Quinones, F.R. ; E.A. Silva ; M.A. Rizzutto ; S.M.Palácio ; A.N.Módenes and  N. Szymanski (2008): Chromium ions phytoaccumulation by three floating aquatic macrophytes from a nutrient medium World Journal of Microbiology and Biotechnology, 2: 3063–3070.
Espinoza-Quiñones, F.R. ; A.N. Módenes ; I.L. Costa ; J.R. Palácio ; S.M. Daniela ; N.S. Trigueros ; E.G. Kroumov and A.D. Silva (2009):Kinetics of lead bioaccumulation from a hydroponic medium by aquatic macrophytesPistiastratiotes . Water Air Soil Pollut., 203:29–37
Fawzy, M.A. ; N.E. Badr ; A.El-Khatib and A. Abo-El-Kassem (2012):Heavy metal biomonitoring and phytoremediation potentialities of aquatic macrophytes in River Nile .Environmental Monitoring and Assessment, 184: 1753–1771.
Gadallah, M.A.A. (1996):Phytotoxic effects of industrial and sewage waste waters on growth, chlorophyll content, transpiration rate and relative water content of potted sunflower plants. Water Air Soil Pollut., 89:33–47
Galal, T. ;K. Shaltoutand L. Hassan (2012): The Egyptian northern lakes:habitat diversity, vegetation and economic importance. LAP Lamber Academic, Saarbrückent
Galal, T.M. and H.S. Shehata(2014): Evaluation of invasive macrophyteMyriophyllumspicatum L. as a bioaccumulator for heavy metals in some water courses of Egypt. Ecological Indicators., 41: 209-214
Galal, T.M. ; E.M. Eid ; M.A. Dakhil and L.M. Hassan (2018):Bioaccumulation and rhizofiltration potential of PistiastratiotesL. for mitigating water pollution in the Egyptian  wetlands. Int J Phytorem., 20:440–447
330                                                   Egypt. J. of Appl. Sci., 34 (11) 2019
Galal, T.M and E.A. Farahat (2015): The invasive macrophytePistiastratiotes L. as a bioindicator for water pollution in Lake Mariut, Egypt.Environ Monit Assess., 187(701): 1-10
Ganjo, D.G. and A.I. Khwakaram (2010): Phytoremediation of wastewater using some of aquatic  macrophytes as biological purifiers for irrigation purposes. Int J Environ ChemEcol Geo Geophys Eng., 4:222–245.
Gupta, P. ; R. Surendra and A.B. Mahindrakar (2012):Treatment of water using water hyacinth, water lettuce and vetiver grass - a review. Resour. Environ., 2: 202-215
Irfan, S. (2015): Phytoremediation of heavy metals using macrophyte culture. J. Int. Sci. Public., 9: 476-485
Jiang, X.J. ; Y.M. Luo; Q. G. Zhao; S.V. Wu; L.H. Wu; X. L. Qiao and J. Song (2000): Phytoreemediation of heavy metal contaminated soils. I response of metal accumulator plant Brassica Juncea to soil contamination of copper, zinc, cadmium and lead.Soils., 32: 71-74
Jovanic, B.R. ; S.Bojovic ; B. Panic ; B.Radenkovic and M.Despotovic (2010): The effect of detergent as polluting agent on the photosynthetic activity and chlorophyll content in bean leaves. Health., 2:395–399
Kao, C.M. ; J.Y. Wang ; H.Y. Lee and C.K. Wen (2001): Application of a constructed wetland for non-point source pollution control. Water Science and Technology., 44:585-590.
Khankhane, P. ; J. Sushilkumar and H.S. Bisen(2014): Heavy metal extracting potential of common aquatic weeds. Indian Journal of Weed Science., 46(4): 361-363.
Kumar, B. ; K. Smita and L.C. Flores (2017): Plant mediated detoxification of mercury and lead. Arab J Chem., 10:S2335–S2342
Lidon, F.C. and F.S. Henriques (1994): Subcelbular localization of copper and partial isolation of copper proteins in roots, from rice plants exposed to excess copper. J. Plant Physiol., 21: 427-436
Li, J. ; M.Leisner and J.Frantz (2008):Alleviation of copper toxicity in Arabidopsis thaliana by silicon addition to hydroponic solutions.J.Am.Soc.Hort.Sci., 133: 670–677
Egypt. J. of Appl. Sci., 34 (11) 2019                                                      331
Liu, D. ; W. Jang and W. Hou (2001): Uptake and accumulation of copper by roots and shoots of maize (Zea may L). Journal of Environmental Sciences, 13(2): 228-232.
Liu, J.N. ; Q.X. Zhou and T.Sun (2009): Cadmium tolerance and accumulation of Althaearosea Cav. and its potential as a hyperaccumulator under chemical enhancement. Environ Monit Assess., 149:419–427.
Liu, J.N. ; Q.X. Zhou ; T. Sun ; L.Q. Ma and S.Wang (2008): Identification and chemical enhancement of two ornamental plants for phytoremediation. Bull Environ ContamToxicol., 80:260–265.
Lytle, J.S. and T.F. Lytle (2001): Use of plants for toxicity assessment of estuarine ecosystems.Environ. Toxicol. Chem., 20 (1): 68–83.
Mao, X. ; R. Jiang ; W. Xiao and J.Yu (2015): Use of surfactants for the remediation of contaminated soils: a review. J Hazard Mater., 285:419–435
Miretzky, P. ; A. Saralegui and F. Cirelli (2004): Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina). Chemosphere., 57:997–1005.
Miretzky, P. ; A. Saralegui and A.F. Cirelli (2006): Simultaneous heavy metal removal mechanism by dead macrophytes.Chemosphere., 62:247–254
Mishra, V.K. and B.D. Tripathi.(2008): Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresource Technology., 99:7091-7097.
Mulligan, C.N. ;R.N.Yong and B.F.Gibbs (1999a): On the use of biosurfactants for the removal of heavy metals from oil contaminated soil. Environ. Prog., 18: 31-35.
Mulligan, C.N. ; R.N. Yong and B.F. Gibbs (1999b): Removal of heavy  metals from contaminated soil and sediments using the biosurfactantsurfactin. J. Soil Contam., 8. 231-254
Mungur, A.S. ; R.B.E. Shutes ; D.M. Revitt and M.A. House (1997): An assessment of metal removal by a laboratory scale wetland. Water Science and Technology., 35:125-133.
Odjegba, V.J. and I.O. Fasidi (2004):Accumulation of trace elements by Pistiastratiotes: implications for phytoremediation. Ecotoxicology., 13:637–646.
Olguin, E.J. ; D.A. Garcia-Lopez ; R.E. Gonzllez-Portela andG. Snchez-Galvln (2017):Year-round phytofiltration lagoon assessment using Pistiastratiotes within a pilot-plant scale biorefinery. Sci Total Environ., 592:326–333.
332                                                   Egypt. J. of Appl. Sci., 34 (11) 2019
Ohsumi, Y. ; K. Kitamoto and Y. Anrakeu (1988): Changes induced in the permeability barrier of the yeast plasma membrane by cuperic ion. J Bact., 170: 2676-2682
Ouzounidou, G. ; M.Ciamporova ;M.MoustakasandK.Arataglis(1995):Responsesof maize (Zea mays L.) plants to copper stress.I.Growth ,mineral content andultrastructure of roots.Environ.Exp.Bot., 35: 167–176
Pettersson, A. ; M. Adamsson and G. Dave (2000): Toxicity and detoxification of Swedish detergents and softener products. Chemosphere., 41:1611–1620.
Ramamurthy, A. and H. Schalchian (2013): Surfactant assisted removal of Cu(II),Cd(II) and Pb(II) from contaminated soils. Environ Prot Eng., 39(3): 88–99.
Rolli, N.M. ; R.B.Hujaratti ; H.S.Giddanavar ; G.S.Mulagund and T.C. Taranath(2017):Toxicity Effect of Copper on Aquatic Macrophyte (PistiastratiotesL.)Int J Cur Res Rev., 9 (15):14-20.
Sanita-Di-Toppi, L. and I.Gabbrielli(1999): Response to cadmium in higher plants. Environ. Bot., 41:105-130
Sharrel, R. ; K.A. Aju ; M.Sathish and M.S. Jisha (2014): Surfactants: toxicity, remediation and green surfactants. Environ ChemLett., 12:275–287
Sherameti, I. and A.Varma (2015):Heavy metal contamination of soils :Monitoring and remediation. Springer Intl. Pub.AG Switzerland
Silva, S.A. ; V.H. Techio ; E.M. Castro ; M.R. Faria and M.J. Palmieri(2013): Reproductive, cellular, and anatomical alterations in Pistiastratiotes L. plants exposed to cadmium.Water Air Soil Pollut., 224: 1454-1462
Stiborava, M. ; M. Ditrichova and A. Brezinova (1987): Effect of heavy metal ions on growth and biochemical characteristics of photosynthesis of barley and maize seedling. Biol. Plant., 29(6):453 – 467
Stewart, E. A. (1989): Chemical analysis of Ecological Materials Ed2. Blackwell scientific publications, Oxford, London, Edinburgh
Tackholm, V. (1974): Students’ flora of Egypt. Cooperative Printing Company, Beirut
Egypt. J. of Appl. Sci., 34 (11) 2019                                                      333
Torres, L.G. ; M.Climent ; J.Saquelares ; E.R. Bandala ; J. Urquiza and R. Iturbe (2007): Characterization and treatability of a contaminated soil from an oil exploration zone. Int J Environ Sci Technol., 4:311–322
Vardanyan,L.G. and B.S. Ingole (2006):Studies on heavy metal accumulation in aquatic macrophytes from Sevan (Armenia) and Carambolim (India) lake systems. Environ Int., 32:208–218
Van Asshe, F. and H. Clijster. (1990): Effects of metals on enzyme activity in plant. Plant cell environ. 13: 195-206
Vinod, K., S .Jogendra ., S. Ashu and K. Pankaj (2019 ) : Phytoremediation of copper, iron and mercury from aqueous solution by water lettuce (Pistiastratiotes L).Environmental Sustainability (2019) 2:55–65
Wahla, I. H. and M. B. Kirkham (2008): Heavy metal displacement in salt-water irrigated soil during phyto-remediation. Environ. Poll.,155: 271-283.
Williams, A.E. and R.E. Hecky(2005): Invasive aquatic weeds and eutrophication: The case of water hyacinth in lake Victoria., In: Restoration and Management of Tropical Eutrophic Lakes. M. Vikram Reddy (ed.), Science Publishers, Enfield, NH, USA, pp. 187-225.
Yusuf A.A. ; T. Arowolo and O.Bamgbose(2002):Cd, Cu and Ni levels in vegetables from industrial and residential Areas of Lagos city Nigeria. Global journal of Environmental Sciences., 1: 1-3.
Zayed, A. ; S.Gowthaman and N. Terry (1998):Phytoaccumulation of trace elements by wetland plants: I. Duckweed. J. Environ Qual., 27:715–721