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ABSTRACT 
The interaction behavior of planar/nonplanar of bright and dark ion 

acoustic solitary waves (IASWs) in a multicomponent plasma composed 
of positive and negative ion fluids and kappa distributed superthermal 
electrons is investigated. For the generic case, the extended Poincaré - 
Lighthill - Kuo (PLK) method is employed to derive planar and 
nonplanar Korteweg-de Vries (KdV) equations and phase shift equations. 
The nonlinear propagation and the collision of planar/nonplanar bright 
and dark IASWs are studied.  On the other hand, at a critical value of ion 
concentration, the extended PLK method is applied to obtain the 
modified planar/nonplanar KdV equations and their corresponding phase 
shifts. It is found that planar/nonplanar bright – planar/nonplanar dark 
IASWs can propagate and collide with each other. In all cases, the effects 
of several parameters such as: ion concentration, the position of IASWs, 
negative ion-to-positive ion mass ratio, the superthermality of electrons 
on the trajectories of planar/nonplanar bright and dark IASWs after 
collision are investigated. Numerical calculations lead to some highlights 
on the properties of IASWs (e.g., in laboratory plasmas such as laser–
matter/plasma interaction experiments). 

1. INTRODUCTION  
The nonlinear planar/nonplanar ion acoustic solitary waves 

(IASWs), as one important nonlinear phenomena in a plasma, have been 
studied by many authors in various models of plasma physics in recent 
years [1-4]. Observation of ion acoustic solitons experimentally for first 
time [5], and in the years that followed, several studies of ion acoustic 
solitary waves have been discussed [6-8]. Furthermore, IASWs in 
multicomponent plasma have been studied by a number of authors 
resulting in a considerable success in clarifying many aspects of the 
characteristics of solitary planar [9, 10] and nonplanar systems [11-14]. 
An unmagnetized plasma consisting of warm adiabatic ions, 
superthermal electrons, and thermal positrons were considered [15]. This 
study may introduce a focus on the properties of ion acoustic solitary 
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waves in space and laboratory plasmas. Several theoretical and 
experimental investigations reports the importance of study of 
suprathermality in non-Maxwellian plasma particles which arise due to 
the influence of external fields acting on the space or laboratory plasmas 
( represented by a Kappa distribution) [16-20]. For example, the head-on 
collision of two concentric cylindrical ion acoustic solitary waves is 
discussed [21]. They showed new effects, geometric and dynamics which 
are absent in Cartesian solitons and could be tested in experimental 
nonlinear ion acoustic waves in plasma. Also, the head-on collision 
between two ion-acoustic solitary waves in an unmagnetized electron-
positron- ion plasma has been investigated [22]. The effects of the ratio of 
electron temperature to positron temperature, and the ratio of the number 
density of positrons to that of electrons on the phase shift are studied. It is 
found that these parameters can significantly influence the phase shifts of 
the solitons and the compressive solitary wave can propagate in this 
system. Head-on collision of ion acoustic solitary waves in a three-
component unmagnetized plasma with cold ions, Boltzmann distributed 
positrons, and superthermal electrons [23]. The effects of several plasma 
parameters such as: the ratio of electron temperature to positron 
temperature, the spectral index of the electron kappa distribution, and 
fractional concentration of positron component on the phase shift are 
studied. It is found that the superthermal electrons play a significant role 
on the collision of ion acoustic solitary waves. Continually; the nonlinear 
propagation of small but finite amplitude ion acoustic wave with 
superthermal electrons and positrons in a bi- ion collisionless plasma are 
discussed [24]. They have examined the effect of the electron 
superthermality on the ion acoustis soliton characteristics and insure 
supporting of their model to compressive as well as rarefactive solitary 
structures. An investigation to the head-on collision of 
cylindrical/spherical ion-acoustic solitary waves in an unmagnetized non-
planar plasma consisting of warm adiabatic ions and nonthermally 
distributed electrons [25]. They found that the phase shifts induced by the 
collision of compressive and rarefactive solitary waves are very different. 
They also pointed out to the importance of these investigations about the 
observations of electrostatic solitary structures in astrophysical as well as 
in experimental plasmas with nonthermal energetic electrons.  

The extended Poincaré - Lighthill - Kuo (PLK) method have been 
used to study the propagation and interaction between two solitary waves 
[26-32]. Great number of others studies the general case of solitary 
waves interaction by deriving the Korteweg-de Vries (KdV) equations 
and the corresponding phase shifts, and didn't mention the critical case of 
interaction. The one dimensional planar geometry and solitons interaction 
by deducing the modified KdV (mKdV) equations and their 
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corresponding phase shifts at the critical case [33-35]. Tile this moment, 
there is no detailed study for the difference between planar and nonplanar 
IASWs interaction in general and critical case. Thus, the purpose of this 
article is to study and compare the effect of different plasma parameters; 
negative ion-to-positive ion mass ratio, superthermal electron parameter 
on the behavior of planar and nonplanar ion acoustic solitary waves 
(IASWs) interactions in plasma. We organized this paper as follows. Sec. 
II includes the basic equations for planar and nonplanar IASWs including 
positive and negative ions and superthemal electrons. For generic case, 
the PLK method is introduced and the planar and nonplanar Korteweg–
de Vries (KdV) equations are derived in order to describe the propagation 
of ion acoustic solitons, and in Sec. III we continue their corresponding 
phase shift. Furthermore, a modified planar and nonplanar Korteweg–de 
Vries (mKdV) equations with their corresponding phase shifts during 
interaction have been discussed at a critical case, Sec. IV. Numerical 
results and discussion are given in Sec. V. 

II. THE GOVERNING EQUATIONS 
We consider two fluids composed of positive and negative ions 

distinguished by using the index “+” and “-”, and superthermal electrons. 
The planar and nonplanar dynamics of IASWs in multicomponent plasma 
are governed by [36] 
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where  =0 for planar geometry factor and  =1 and 2 for cylindrical and 
spherical (i.e., nonplanar) geometries factors, respectively. The variable 

  (  ) is the density of positive (negative) ions,   (  ) is the velocity of 

positive (negative) ions, φ, r, and t is the electrostatic potential, the space 
coordinate and time variables, respectively. In Eqs. 1-3, the ion density 
  (  ) is normalized by the unperturbed ion density   

 (   
 ), while    

(  ) is normalized by the ion sound speed     √(    )   . The 

variables    and φ are respectively normalized by the unperturbed 

electron density    
  and the thermal potential (        ). The space 

coordinate is normalized by the Debye radius    ( (     
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 ) and the time is scaled by the ion plasma period     
  ( 

(      
       )

  

 ), where     is the Boltzmann constant and    is the 
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electron temperature. Here,   (  ) is the positive (negative) ion mass 

and the positive ions charge Z+=1. The dispersion relation implies μ1+ 

μ2=1, where   (         ) and   (         ). 
The electrons number density    are assumed to possess superthermal 

distribution [36, 37] 
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which only valid for 𝜅 > 3/2, where κ is the superthermal parameter 

and   (  
 

 
). The fluid equations are coupled through the Poisson’s 

equation. We apply the extended PLK method to study planar and 
nonplanar IASWs interaction, so that,  the following stretching is 

introduced [19, 29]  
ξ =  ε(r – λt –r1) + ε2 Po (ξ ,η ,R) + …….,  
η = ε(r + λt –r2) + ε2 Qo (ξ ,η ,R) + ……. , ( ) 
R = ε3 r.  

The quantities        and   can be expanded about their equilibrium 

values in power series of   as follows [21, 38]  
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One can write these operators in a compact way, viz. 
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The solutions of Eqs. 7 can be given as 
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After some algebraic manipulation we the next order in   as 
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By solving this system of Eqs we have 
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Here  ̂              has been defined as the part of    which 

depends on ξ, η and τ in a way which cannot be separated with similar 

definitions for other variables and higher orders [34]. 
The expressions in Eqs. 10 are coupled through  
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It is clear that from Eq. 11, there exist two possibilities; one is 

called generic case, at    
     

     the other one is called critical 

case, at         
III.GENERIC CASE:  

The generic case can be achieved at           and thus find that the 

series expansion 5 go in even orders of  much as is the case for the usual 
derivation of the KdV equation. 

Finally, we arrive at the order to a set of equations where interesting new 
contributions appear:  
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Now, combining the parts of Eq. 12 by using Eq. 10 which contain terms 

that only depend on ξ or on  (besides ), yields the typical cylindrical 

Korteweg-de Vries (cKdV) equations  
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for the right- and left-going solitary waves, respectively, with the 

coefficient of the quadratic nonlinearity, A, and the dispersion coefficient 

B are given by     , and 
  

 (     )
 , respectively.  

Furthermore, there is more information still, in the terms which contain 

both ξ and  , besides  , giving  
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The second and third terms in Eq. 15 will generate secular contributions 
at the next higher order therefore we have: 
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In addition, the other remaining term in 15 will give rise to a contribution  

 ̂          , (  ) 

to   ,     and     parts, which will have to be determined from higher-

order contributions. 

For large R, the asymptotic solitary wave solutions of Eqs. 12 and Eqs.13 
these are the well-known "sech squared" solitons of KdV theory, here 

[39-41]  
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where φξ and φη are the amplitudes of solitons S1 and S2 in their initial 

positions. Here, the value of θ1and θ2 are given by R1/R, R2/R, 
respectively, where R1=ε3r1 and R2=ε3r2. Now, the phase shift functions 
P0(ξ, η, R), and Q0(ξ, η, R) are obtained by substituting for φ2ξ and φ2η 

into Eq. 17, we have 
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where        (     )        (     )      [(     )     ] and  

    [(     )     ]. So that, the trajectories of the two IASWs are 
given by 
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Using Eqs. 23 and Eqs. 24, the corresponding phase shifts are given by  
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Fig. 1, The variation of nonlinear coefficient A, against 1/μ2 for κ =1.8, for 

planar and nonplanar geometry at φ2ξ=0.9 φ2η=0.3, ε=0.1, φη= 

1/µ2 
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In this part of the present manuscript, we employed the extended 

PLK method to drive the planar and nonplanar Korteweg-de Vries (KdV) 
equations and phase shift equations are derived to investigate the future 

of IASWs after collision.Actually, it is valuable here mentioning that 
there exist two interacting solitons must have the same polarity given by 
the sign of AB. If AB > 0, both solitons must have positive polarity, but 

when AB < 0, both solitons must have negative polarity. Figure1 
represents the relation between the amplitude of IASWs and the negative 

ion-to-positive ion density ratio   .The ranges for the soliton polarities 
shown in Fig.1 agree with those found in recent head-on collisions of 

electrostatic solitons [33, 34]. Moreover, we consider two soliton S1 is 
traveling to the right and soliton S2 is traveling to the left, we see from 

Eqs. 25 and Eqs. 26 that due to collision, each soliton has a positive 
phase shift in its traveling direction. Physically, the positive phase shift 
means that IASWs increase their velocities during the collision stage 

[42].  

 

 
 

 
 

 
 
 

 
 

 
 
FIG. 2, The variation of the phase shift P with µ1 for planar geometry (  = 0), 

cylindrical geometry (  = 1) and for spherical geometry (  = 2) at 
φ2ξ=0.9 φ2η=0.3, ε=0.1, φη=0.1, φξ=0.4   

Figure 2 explores the differences in the phase shifts ΔP for planar 
and nonplanar (cylindrical/spherical) geometries. It is observed that the 
phase shifts ΔP is high for the planar geometry, intermediate for 
cylindrical geometry, while it is low for the spherical geometry.  If we 
increase µ1 to very large values the nonplanar geometries would 
approach the planar geometry. Therefore, the nature and the collision of 
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IASWs significantly change for large values of µ1, the scope of the 
present work.  

 
 

 
 

 
 

 
 

 
 
Fig. 3, The variation of the phase shift P with   for planar geometry (  = 0), 

cylindrical geometry (  = 1) and for spherical geometry (  = 2) at 

φ2ξ=0.9 φ2η=0.3, ε=0.1, φη=0.1, φξ=0.4   

Figure 3 presents the variation of the phase shift ΔP against the 

superthermal parameter   for at the different values of   = 0, 1 and 2. For 

agiven  , the phase shift ΔP decreases rabidly with   when    2.5 and 

increases smoothly with   when    2.5. For a given value of  , the 

magnitude of the phase shift ΔP for the planar geometry is more than its 
value for the nonplanar geometry. 

 
 
 
 
 
 
 
 
 
 
Fig. 4, The variation of P with θ for compressive (μ=2) and rarefactive 

(μ=10) were (  = 0) for planar geometry, (  = 1 ) for cylindrical 

geometry,  and ( (  = 2 ) for spherical geometry  
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 In Fig. 4 we have plotted the phase shifts variation against θ1 for 

planar and nonplanar geometry. It is observed that: for a given value of  , 
the phase shift ΔP increases with θ1. For a given value of θ1, the phase 

shift curves of the cylindrical geometry and the spherical geometry are 
fairly close to each other, whereas the phase shift curve for the planar  

geometry are comparatively far away from them. 

 

 
FIG. 5 the colliding process of two planar and nonplanar IASWs of rarefactive 

colliding process geometry at the same values as in fig.2  
 

For planar, cylindrical and spherical geometries, Figs. 5 and 6 show 

the variation of the negative ion-to-positive ion density ratio against the 
space coordinate x and the time variable t, respectively. Additionally, 
Figures 5 and 6 demonstrate that two rarefactive and compressive IASWs 

propagate in opposite directions approach to each other, collide, and 
asymptotically separate away, respectively. We observe that during 

collision one practically motionless composite structure forms for some 
time interval. 
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Fig. 6 The colliding process of two planar and nonplanar IASWs of 

compressive colliding process geometry at the same values as in fig.2  

After the interaction, one can note that the trajectories of the 
rarefactive and compressive IASWs have deviated from the initial 
trajectories. In fact, these deviations are just the phase shifts for two 

IASWs [33]. Physically, this means that the negative ion-to-positive ion 
density ratio has an important effect on the dynamical behavior (i.e., 

rarefactive or compressive) of IASWs. This agrees with result obtained 
by El-Labany et al. [43]. 
IV. SOLITONS AND PHASE SHIFTS AT CRITICAL NEGATIVE 

IONS DENISTY:  

In this section we take the ion densities to be critical μ2c, with A = 

0. Without loss of generality, the quadratic nonlinearity in the KdV 
equations 13-14 disappears, and φ2ξ= 0 and φ2η= 0, but   ̂    , and we 

must keep the contributions in the first order perturbation solutions. 
Accordingly, Eq. 10 becomes  
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  At critical negative ion density, the third order variables becomes  
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Solving equations containing the terms depending on ξ or η, 
besides τ we obtain the modified cylindrical Korteweg-de Vries 

(mcKdV) equations. 
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Because mKdV equations like 29a and 29b are invariant for a sign 

inversion of     or     the one-soliton solutions can be written as  
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where φ0ξ and φ0η are the maximum amplitudes of IASWs in their initial 

position. Note that the respective   signs are not coupled. After the same 

GIGABYTE
Stamp



 

 

mathematical strategy that is used in Sec. III, we finally obtain the 

corresponding phase shifts after collision of the two IASWs in the critical 
case.  
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Fig. 7 In the critical case, the contour plot for the colliding process of two 

dark/bright IASWs at the planar case   = 0 at different times a)t = 0, 

b)t = 25 and c)t = 55. 

V. CONCLUSIONS 

Finally, we conclude the critical case, it is important to mention 
that the interaction of the IASWs in planar one-dimensional geometry, 

cylindrical, and spherical geometry are different 
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Fig. 8 In the critical case, the contour plot for the colliding process of two 

dark/bright IASWs at the cylindrical case   = 1 for the same values as 
in fig.10 at different times a)t = 0, b)t =42 and c)t = 75. 

Figures 7(a)-7(c) [8(a)-8(c) and 9(a)-9(c)] represents the contour 

plot for the colliding processes between two bright/dark planar 
[cylindrical and spherical] IASWs at different times which admits 

combination of bright and dark IASWs collision agrees with [43]. It's 
clear that the two bright/dark of planar and nonplanar IASWs interact to 
create single composite structure at different times. This behavior may 

explain as follows: the wave speed for planar IASWs is greater than the 
cylindrical and the spherical IASWs and cylindrical IASWs are much 

greater than spherical IASWs. 
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Fig. 9. In the critical case, two dark/bright IASWs at the spherical case   = 2 for the 

same values as in fig.10 at different times a)t = 0, b)t =50 and c)t = 80.  

 

 
 

 
 

 
 

 
 
 

 
Fig. 10, The variation of the phase shift Pc with θ (  = 0 ) for p lanar geometry, (  = 1) 

for cylindrical geometry,  and  (  = 2) for spherical geometry  
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Fig.10 explores the difference in phase shifts ΔPc for planar and 

nonplanar geometries at the critical case. If the angle θ  10 the planar 

geometry approach the nonplanar geometries but when θ   10 they 

became to be far away from each other.  

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 
Fig. 11, The variation Pc with   (  = 0) for planar geometry, (  = 1) for 

cylindrical geometry, and (  = 2) for spherical geometry  

Fig. 11 represents the phase shifts change the superthermal 

parameter   for planar and nonplanar (cylindrical, and spherical) 

geometry. For a given value of  , the phase shift curves decreases rabidly 

until  =5 for the planar geometry and almost  =3 for the cylindrical 
geometry and the spherical geometry. Figures 12 show the variations of 

the negative ion-to-positive ion density ratio against the space coordinate 
x and the time variable t, respectively, for the critical case.  

Continuously, Figs 12 ensure that the compressive IASWs 

propagate in opposite directions approach to each other, collide, and 
asymptotically separate away, respectively.  After the interaction, one can 

note that the trajectories of compressive IASWs have deviated from the 
initial trajectories for the planar and the nonplanar geometry. This agrees 
with result obtained [43]  
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Fig. 12 The colliding process of two planar and nonplanar IASWs of 

compressive colliding process geometry at the same values as in fig.7  

In this manuscript we considered a multicomponent plasma 
consisting of mobile positive and negative ions, and superthermal 

electrons in planar and nonplanar geometry. Accordingly, we employed 
the extended PLK method, the nonlinear mcKdV equations and their 
change in trajectories were derived. For the generic case, the nonlinear 

propagation and the collision of IASWs are described by nonlinear cKdV 
equations and their corresponding phase shifts. Furthermore, the effects 

of some plasma parameters such as; the negative ion-to-positive ion 

density ratio 2, superthermal parameter  , and the positions of IASWs r 

on dynamics and collisions of IASWs are discussed and graphically 
displayed. In particular, it is found that negative ion-to-positive ion 
density ratio play an important role in the planar and nonplanar geometry 

not only on the formations and the dynamical behavior of IASWs, but 
also on the IASWs collision which translated in the presented phase 

shifts. 
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ينية المضيئة والمظممة في بلازما عديدة المكونات بها تالتصادم لمموجات السولو 
 حراريه في احداثيات مختمفةفوق الكترونات 

 محمد شكري
 جامعة دمياط–كمية العموم  -قسم الفيزياء 

تم دراسة التصادم الخطي والغير خطي لمموجات السموتونية الغبارية في بلازما تحتوي عمي 
ة وتوزيع قابا للالكترونات الفوق حرارية . وجد ان في الحالة العامة نوعان من الايونات الموجبة والسالب

وتم دراسة ازاحة الطور لمموجات   KdVهناك نوعان من المعادلة  PLK بواسطة استخدام طريقة 
 المضيئة والمظممة. 

واستنتاج المعادلة   PLKفي الحاله الخاصة عندط تركيز معين للايونات تم استخدام طريقة 
لازاحة الطور الخاصه بها قد وجد ان نوعان من الموجات الخطية والغير خطية   KdV المعدله ل

طدام ببعضهما في كلا الحالات. تم دراسة تاثير المضيئة والمظممة عمي الترتيب يمكنهم الانتشار والاص
معامل الفوق حراري للالكترونات  –موجبة بعض المتغيرات مثل النسبة بين تركيز الايونات السالبة الي ال

 عمي التصادم 
النتائج الرياضية لهذا البحث تتنبا بخصائص التصادم لمموجات السولونينية الغيارية في المعمل 

 وتفاعلات البلازما
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