QUALITY CHARACTERISTICS OF MEATBALLS FORMULATED WITH DIFFERENT LEVELS OF CAMEL MEAT

E.F. Zaki
Animal Breeding Department, Animal and Poultry Production Division, Desert Research Center, E-mail: angryfayz@yahoo.com

ABSTRACT

This study investigated the effect of replacing camel meat instead of cow meat (50 and 75%) on quality characteristics of meatballs. Physical properties, cooking loss, colour parameters, shrinkage measurements and sensory evaluation were studied. pH value of control meatballs was higher than meatballs formulated with camel meat. Meatballs formulated with different levels of camel meat were significantly lower in cooking loss than control group. Results of shear force values illustrated that camel meatball significantly lower (more tender) than control group. Color measurements of meatballs formulated with different levels of camel meat showed significant improvement in color parameters. Meatballs formulated with different levels of camel meat showed the lowest reduction in diameter and thickness than control samples. No significant differences were found in sensory attributes of meatballs, in spite of came meatballs exhibited slightly higher in sensory scores.

Key Words: camel meat, meatballs, physical properties, sensory evaluation

INTRODUCTION

Camel is an one of the important source of meat production in Arab countries. Meat is the most important product from the camel. The importance of the camel as a meat-producing animal is increasing due to the amount of high nutritive value meat they produce, besides their ability to survive under harsh environments (Kadim et al., 2008). Camel meat is characterized as a superior and healthier meat compared with other red meats (Abdel-Naeem et al., 2022). Camel meat contained low-fat content, low cholesterol, high proportion of proteins, high moisture content and vitamins (Abdel-Naeem & Mohamed 2016). On the other hand, camel meat had the lowest total bacteria counts compared with other red meats (Mohammed et al., 2020). Camel meat is considered as an appropriate food source to meet the growing needs for meat in developing countries, especially for low-income population (Baba et al., 2021).

Recently, camel meat has become a popular alternative to other kinds of meats (Maqsood et al., 2015). Meat products such as meatballs, sausages, burgers, and shawarma may be made from camel meat, increasing its use and popular acceptability (Kadim, et al., 2008). Camel meat can be added up
to 75% in burgers as a substitute for beef without compromising consumer acceptability (Ibrahim and Nour, 2010).

Therefore, the aim of the current study was to study the effect of using different levels of camel meat in the formulation of meatballs to improve the quality characteristics of the product.

MATERIALS AND METHODS

Preparation of camel meatballs

Fresh camel meat of Arabian one-humped camels (Camelus dromedarius) and beef meat were obtained from a slaughter house (Cairo, Egypt) and transported to the laboratory for meatballs processing. Camel meat and beef meat were separately ground through a 3-4 mm plate meat grinder (K.R.SU: KMG1700, China). The following ingredients 65% lean camel meat, 20% fat, 1.5% sodium chloride, 12% (w/w) flour, 10% (w/w) onion, and 1% seasonings mix were used for meatballs processing. The mixture was divided into three treatment groups: (T1) Control group (100% beef meat) and the other treatments (T2, and T3) were formulated with 50, and 75% of camel meat. Three replicates for each formula were processed. Meatballs were placed in plastic foam trays, packed in polyethylene bags and frozen at -20°C ±2 until further analysis.

Physical analysis

pH value

pH values of raw meatballs were determined as describe by Khalil (2000) by using a digital pH-meter (Jenway 3320 conductivity and pH meter, England).

Cooking measurements

Meatballs were cooked in a preheated oven for 30 min. All cooking measurements were carried out on three replicates of each treatment. Cooking loss of meatballs samples was determined as described by Naveena *et al.* (2006) as follows:

Cooking loss (%) = \(\frac{(\text{Uncooked sample weight}) - (\text{Cooked sample weight})}{\text{Uncooked sample weight}} \times 100 \)

Shear force value

Shear force value of each cooked meatballs was determined by using Instron Universal Testing Machine (Model 2519-105, USA) for three times at different positions. The average shear force was calculated from the three obtained results (Kg/f).

Shrinkage measurement

Raw and cooked meatballs were measured for diameter and thickness as described by Berry (1993) using the following equation:

Reduction in diameter (%) = \(\frac{(\text{Uncooked sample diameter}) - (\text{Cooked sample diameter})}{\text{Uncooked sample diameter}} \times 100 \)
Reduction in thickness (%) = \[\frac{(\text{Uncooked sample thickness}) - (\text{Cooked sample thickness}) \times 100}{\text{Uncooked sample thickness}} \]

Shrinkage (%): Dimensional shrinkage was calculated using the following equation as reported by Murphy et al. (1975)
\[\frac{(\text{Raw diameter} - \text{Cooked diameter}) + (\text{Raw thickness} - \text{Cooked thickness}) \times 100}{\text{Raw diameter} + \text{Raw thickness}} \]

Colour measurements

Colour parameters \((L^*, a^*, b^*)\) of raw meatballs were measurements according to CIE (1976) by using Chroma meter (Konica Minolta, model CR 410, Japan). A total of three spectral readings were taken for each replicate for each treatment on different locations.

Sensory Evaluation

Meatballs samples were subjected to organoleptic evaluation scored appearance, texture, juiciness, flavour, tenderness and overall acceptability using a 9- point hedonic scale as described by A.M.S.A. (1995). The mean scores of the obtained results of organoleptic evaluation were then statistically analyzed.

Statistical analysis

All data were analyzed using statistical analysis system SAS (2000).

RESULTS AND DISCUSSIONS

Physical properties of meatballs formulated with different levels of camel meat are shown in Table 1. pH value of control meatballs was higher than meatballs formulated with camel meat. On the other hand, increasing the level of camel had non-significant effect on pH values. These results are consistency with results that found by Heydari et al. (2016). They found that increasing camel meat level in the processing of camel burger was not significantly affected on pH value. Conversely, Ibrahim and Nour (2010) found that pH values of camel burger increased significantly with an increase in the level of camel meat.

Table 1. Physical properties of meatballs formulated with different levels of camel meat

<table>
<thead>
<tr>
<th>Physical property</th>
<th>Treatments</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH value</td>
<td></td>
<td>5.93a</td>
<td>5.55b</td>
<td>5.53b</td>
<td>0.054</td>
</tr>
<tr>
<td>Shear force (Kg/f)</td>
<td></td>
<td>1.37a</td>
<td>0.92ab</td>
<td>0.71b</td>
<td>0.269</td>
</tr>
<tr>
<td>Cooking loss (%)</td>
<td></td>
<td>35.44a</td>
<td>32.79ab</td>
<td>27.14b</td>
<td>2.459</td>
</tr>
</tbody>
</table>

means within the same row with different superscripts letters are different (p<0.05).

T1: control, T2: contains 50% camel meat, T3: contains 75 % camel meat SEM: standard error of means.
Results of shear force values illustrated that control meatballs had the higher shear force value than camel meatball. On the other hand, addition different levels of camel meat resulting in non-significant difference between camel meatballs samples. These results are close to those obtained by Soltanizadeh et al. (2010). They found slight significant difference in shear force values of sausages formulated with different levels of camel meat.

Results of cooking loss showed that meatballs formulated with different levels of camel meat were significantly lower in cooking loss than control. These results agree with that obtained by Fthi-alrhman (2005) who found that frankfurter formulated with camel meat significantly improved the cooking loss when compared with beef samples. Also, Elsharif (2008) reported that cooking loss of camel sausage decreased significantly with increasing the level of camel meat. Heydari et al. (2016) found that camel burger had the lower cooking loss and higher cooking yield than control samples.

Results of colour measurements of meatballs formulated with different levels of camel meat are showed in Table 2. Addition of camel meat significantly affected on \(L^* \) values. Meatballs formulated with camel meat showed lower \(L^* \) value than control. On the other hand, increased the level of camel meat had non-significant effect on \(L^* \) values. Meatballs formulated with different levels of camel meat exhibited higher \(a^* \) value (redder) than control samples. On the other hand, increase the level of camel meat did not significantly different on \(a^* \) values.

<table>
<thead>
<tr>
<th>Colour measurement</th>
<th>Treatment</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L^*)</td>
<td></td>
<td>52.76a</td>
<td>46.98b</td>
<td>47.07b</td>
<td>0.625</td>
</tr>
<tr>
<td>(a^*)</td>
<td></td>
<td>7.88b</td>
<td>9.13a</td>
<td>9.77a</td>
<td>0.265</td>
</tr>
<tr>
<td>(b^*)</td>
<td></td>
<td>11.20a</td>
<td>8.91b</td>
<td>8.98b</td>
<td>0.432</td>
</tr>
</tbody>
</table>

Means within the same row with different superscripts letters are different (p<0.05).

T1: control, T2: contains 50% camel meat, T3: contains 75% camel meat SEM: standard error of means.

Control meatballs showed the higher \(b^* \) value than formulated meatballs. The increase in camel meat level had no significant different on \(b^* \) values. These results are close to that obtained by Heydari et al. (2016). They found that control samples had higher \(L^* \) value than the meatballs processed from different levels of camel meat, and \(a^* \) was higher in burgers formulated with different levels of camel meat. On the other hand, Ibrahim and Nour (2010) found that lightness (\(L^* \)), redness (\(a^* \)) and yellowness (\(b^* \)) values were not affected by adding different levels of camel meat in the formulation of camel burger.
Results of shrinkage measurements of meatballs formulated with different levels of camel meat are showed in Table 3. Meatballs formulated with different levels of camel meat showed the lowest reduction in diameter and thickness than control samples. These results are consisted with results that found by Heydari et al. (2016). They reported that regards to diameter reduction, control burgers showed more reduction in diameter than camel meat burgers. On the other hand, increase in thickness reduction insignificantly with more camel meat addition and showed the highest level in control samples.

Table 3. Shrinkage measurements of meatballs formulated with different levels of camel meat

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Treatment</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T1</td>
<td>T2</td>
</tr>
<tr>
<td>Reduction in diameter (%)</td>
<td>21.73a</td>
<td>21.60a</td>
</tr>
<tr>
<td>Reduction in thickness (%)</td>
<td>15.19a</td>
<td>13.93a</td>
</tr>
<tr>
<td>Shrinkage (%)</td>
<td>18.52a</td>
<td>18.15a</td>
</tr>
</tbody>
</table>

Means within the same row with different superscripts letters are different (p<0.05).

T1: control, T2: contains 50% camel meat, T3: contains 75% camel meat SEM: standard error of means.

Results of shrinkage % revealed that increase the level of camel meat in the formulation of meatballs had no-significant effect on decrease shrinkage, in spite of meatballs formulated with different levels of camel meat exhibited the lower shrinkage. These results are consistency with findings of Heydari et al. (2016). They indicated that camel meat level had non-significant effect on shrinkage of burger samples. Generally, shrinkage decreased with increasing the level of camel meat. Similar results were found by Ibrahim and Nour (2010) who found slight significant differences in shrinkage measurements of camel burger formulated with different levels of camel meat.

Table 4. Sensory evaluation of of meatballs formulated with different levels of camel meat

<table>
<thead>
<tr>
<th>Sensory attribute</th>
<th>Treatment</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T1</td>
<td>0.196</td>
</tr>
<tr>
<td>Appearance</td>
<td>7.20a</td>
<td>7.11a</td>
</tr>
<tr>
<td>Texture</td>
<td>7.05a</td>
<td>7.02a</td>
</tr>
<tr>
<td>Juiciness</td>
<td>7.09a</td>
<td>7.01a</td>
</tr>
<tr>
<td>Flavour</td>
<td>7.50a</td>
<td>7.10a</td>
</tr>
<tr>
<td>Tenderness</td>
<td>7.01a</td>
<td>7.13a</td>
</tr>
<tr>
<td>Overall acceptability</td>
<td>7.25a</td>
<td>7.15a</td>
</tr>
</tbody>
</table>

Means within the same row with different superscripts letters are different (p<0.05).

T1: control, T2: contains 50% camel meat, T3: contains 75% camel meat SEM: standard error of means.
Results of sensory evaluation of meatballs formulated with different levels of camel meat are showed in Table 4. It can be found that no significant differences were found in sensory attributes of meatballs, in spite of came meatballs exhibited slightly higher in sensory scores. These results are close to those obtained by Heydari et al. (2016). They reported that the sensory panel demonstrated that increasing the camel meat in formulation resulted in significant increase in juiciness, texture, flavour and overall acceptability scores. Also, Elsharif (2008) reported that sensorial scores of sausages increased significantly with increasing the level of camel meat. Ibrahim and Nour (2010) showed that the panel scores for the tenderness, flavour, juiciness and colour were not affected by the added level of camel meat in the formulation of camel burger.

CONCLUSION
In conclusion, addition different levels of camel meat (50 and 75 %) on meatballs formulation resulted in a decrease of cooking loss, reduction in diameter, and reduction in thickness with non-significant decrease on shrinkage. Meatballs formulated with camel meat showed improvement in colour measurements and tenderness. The sensory evaluation of meatballs was slightly higher in camel meatballs.

Conflicts of interest
The author declares that no conflict of interest.

Acknowledgements
This work was supported by Animal Breeding Department, Animal and Poultry Production Division, Desert Research Center.

REFERENCES

Egypt. J. of Appl. Sci., 38 (5-6) 2023

خصائص الجودة لكرات اللحم المصنعة بمستويات مختلفة من لحم الإبل

نجي فايز ذكى

قسم تربية الحيوان و الدواجن – شعبة الانتاج الحيواني – مركز بحوث الصحرا – المطرية

تناولت هذه الدراسة تأثير استبدال لحم الإبل بدلاً من لحم البقر، على خصائص الجودة لكرات اللحم وتعد دراسة الخصائص الطبيعية، فقدان اللحم، قياسات التنسيق والتقسيم، والبسميطين كرات اللحم لمجموعة الكنترول أعلى من كرات اللحم المصبوغة من لحوم الإبل، كرات اللحم المصبوغة بمستويات مختلفة من لحم الإبل كانت أقل في فقدان اللحم، ما يشكل مقارنة بالمجموعة الكنترول أظهرت نتائج قياسات الألوان لكرات اللحم المصبوغة بمستويات مختلفة من لحم الإبل تحسن ملحوظًا في قياسات اللحم.. كرات اللحم المصبوغة بمستويات مختلفة من لحم الإبل كانت أقل من حيث اللون من قطر وسمك مقارنة ببعض الكنترول. لم يتم العثور على فروق ذات دلالة إحصائية في الخصائص الحسية لكرات اللحم، على الرغم من أن كرات لحم الإبل أظهرت أعلى قليلاً في بعض الخصائص الحسية.